Insomnia and objective assessment of sleep patterns

E O Bixler, PhD Sleep Research & treatment Center Penn State University Hershey, PA

Question

- Non-Restorative sleep (NRS) and # Wakes have been reported to be associated based on subjective report
- There is a need to assess whether this finding can be supported with objective data.

What is the relationship between subjective report and objective data?

Subjective vs Objective

- SHHS 5 yr followup (Silva, 2007)
 - TST Habitual home PSG (59 min) r=0.18
 - "self-estimate of sleep parameters may be affected by ethnicity or socioeconomic status."
- CARDIA (Lauderdale 2008)
 - TST Habitual actigraphy (0.8 hours) r=0.47
 - "self-reports and measured sleep varied by health, sociodemographic, and sleep characteristics."
- Penn State Cohort
 - TST: Habitual laboratory PSG
 - Normal 1.0 hour
 - Insomniac 0.4 hour

Age & Sleep duration: objective Objective sleep duration decreases with age

Total sleep time \Downarrow

n=3577

Ohayon M et al. Sleep 2004;27:1255–73.

Age & Sleep Duration: Subjective

SHHS 5 yr follow up (Silva, 2007)

- ≤ 67 yrs vs >67 yrs
 - Habitual: 424 min vs 421 min

 Subjective sleep duration remains constant with age in the Penn State Cohort (Age range 20-100 yrs)

Gender

- Women tend to sleep better than men (Bixler 2009)
- However, women are more likely to complain of insomnia

Subjective vs Objective Relationship

- Typically overestimate sleep duration by about 1 hour independent of where or how the objective data were collected
- Age and gender have a unique association with sleep reports
- Influences on subjective sleep duration are complex and multi-factorial including:
 - Age
 - Gender
 - Stress
 - Sleep complaints
 - SES
 - Life style
 - Alcohol
 - Smoking
 - Exercise

Bixler, 2009

Is it of any diagnostic value to combine subjective and objective in the diagnosis of insomnia?

Sleep Lab Measures and Diagnosis and Treatment of Insomnia

- Majority of sleep specialists supported the use of sleep lab in the diagnosis and treatment of insomnia (1970s, 1980s ICSD)
- Some investigators suggested that sleep lab is of no use in the evaluation of insomnia (Kales & Bixler 1982, Kales & Kales 1984, Vgontzas 1994, 1995)
- AASM guidelines: sleep lab is not indicated in the routine evaluation of insomnia (2002)
- Objective sleep measures may predict severity (Vgontzas 1998,2001)

Chronic Insomnia

Clinical implications (Diagnosis)

- Objective measures of sleep are a reliable index of the severity of insomnia
- Insomnia with objective short sleep duration is associated with significant morbidity and mortality similarly to sleep apnea
 - Hypertension (Vgontzas Sleep 2009)
 - Diabetes (Vgontzas Diabetes Care 2009)
 - Mortality (Vgontzas 2009)
- Objective measures may lead to meaningful phenotypes of insomnia

- Association between PSG variables and sleep complaints based on the Penn State Cohort
- Preliminary results

Penn State Cohort

 General Population Age Range 20-100 years Phase I = Telephone 4,364 (resp rate = 73.5%) – Men 12,219 (resp rate = 74.1%) – Women • Phase II = Sleep Laboratory 741 (resp rate = 67.8%) – Men 1,000 (resp rate = 65.8%) – Women

Sample

- Single night PSG

 Fixed 8 Hr recording

 Selected AHI<5
- N=1345
 - Men=543
 - Women=852
- NRS = 14.7%
- DFA = 11.4%
- DMS = 16.5%

Outcome Variables

- Non-Restorative sleep (NRS)
- Difficulty Falling Asleep (DFA)
- Difficulty Maintaining Sleep (DMS)
- Insomnia (INS)
- Excessive Daytime Sleepiness (EDS)

PSG Variables

- Sleep Latency (SL)
- Sleep Efficiency (SE)
- # wakes (#W)
- Difficulty Restoring Sleep (DRS)

Non-Restorative Sleep: Age

Wakes: Age

Non-Restorative Sleep: Gender

Wakes: Gender

Interaction

- Strong interaction between age and gender observed with # Wakes.
- Thus, analysis was completed on each gender separately
- Logistic Regression
 - Controlled for age, BMI, Minority

Significant OR's associated with each outcome variable for Men

	BMI	Minority	PSG		Depression
NRS	1.098				8.509
DFA			DRS	1.057	
DMS	1.116				4.593
INS					11.489
EDS	1.055		DRS	1.051	8.427

Significant OR's associated with each outcome variable for Women

	BMI	Minority	PSG		Depression
NRS	1.034		#W	.930	2.415
DFA		2.409	SL	1.008	3.100
DMS	1.038		SE	.981	2.844
INS		2.404	SE	.978	2.556
EDS	1.073				4.526

Significant OR's for different definitions of NRS for Men

Model		BMI	Minority	PSG	Depression
I	NRS	1.091			7.674
II	NRS	1.003			8.841
III	NRS	1.097			8.042

I Controlling for DFA & DMS

II Controlling for habitual sleep duration

III Controlling for DFA, DMS & habitual sleep duration

Significant OR's for different definitions of NRS for Women

Model		BMI	Minority	PSG		Depression
I	NRS	1.022		#W	0.931	
II	NRS	1.031				2.413
III	NRS	1.033		#W	0.874	

I Controlling for DFA & DMS

II Controlling for habitual sleep duration

III Controlling for DFA, DMS & habitual sleep duration

Age & Sleep duration: objective Objective sleep duration decreases with age

Total sleep time \Downarrow

n=3577

Ohayon M et al. Sleep 2004;27:1255–73.

Prevalence Subjective EDS (Age)

P<0.0001

EDS associated with NRS

- Model EDS as outcome
- Controlled for age, BMI, gender, DFA, DMS, habitual sleep duration, and depression
- Final model
 - Age OR = 0.973
 - BMI OR = 1.063
 - Depression OR = 5.068
 - NRS OR = 5.910

Summary Preliminary Results

- Depression and obesity had a consistent and strong relationship with the outcome variables
- PSG variables appear to contribute less to the association
- Men and women appear to differ in terms of the relationship between PSG and outcome variables
- NRS is common in individuals with many different health as well as primary sleep problems thus the objective mechanism may be multifactorial
- Further refinement of this association is warranted